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Abstract. The Jaccard theory of the electrical properties of ice includes a parameter8, which
relates the change in configurational entropy to the configuration vectorΩ. We show by an
analytic mean-field type of calculation that8 ≈ (8/

√
3)akBT , wherea is the oxygen–oxygen

separation. The Jaccard theory is then fully compatible with the existing theories of the static
permittivity of pure ice in which the key dimensionless parameter is given the valueG ≈ 3.0.

1. Introduction

The disorder of the protons in ice Ih is subject to the Bernal–Fowler [1] rules and gives
rise to the Pauling entropykB ln( 3

2) per molecule [2]. If the ice is polarized to some extent
by the motion of electrical point defects, e.g. under the influence of an electric field, the
arrangement of the protons will no longer be completely random and the configurational
entropy is reduced. This reduction in entropy is an essential feature of the standard theory
of the electrical properties of ice as formulated by Jaccard [3].

In this theory the ordering effect of the motion of point defects is described by a
configuration vectorΩ defined by the equation

Ω =
∫ t

0

(
j1 − j2 − j3 + j4

)
dt ′ (1)

in which j1, j2, j3 andj4 are the fluxes (per unit area) of H3O+ ions, OH− ions, D defects
and L defects, respectively, and the proton system is fully disordered according to the
Bernal–Fowler rules att = 0. It is then assumed that for small� = |Ω| the change in the
entropyS per unit volume due to the ordering can be expressed in the form

T δS(�) = T (S(�) − S(0)) = − 1
28�2. (2)

The constant8 introduced here plays a fundamental role in the Jaccard theory, entering
directly in the equations for the permittivity and dielectric relaxation time of ice. To estimate
8 Jaccard treated the ice as a system of bonds but took no account of the Bernal–Fowler
rule that there are two protons adjacent to each oxygen atom. This gave the value

8J = 16√
3
akBT (3)

in which a is the distance between adjacent oxygen sites (denoted by Jaccard asrOO).
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For pure ice in which the polarization is produced by Bjerrum defects (i.e.σDL � σ±)
the Jaccard theory gives the contribution to the relative permittivity

εs − ε∞ = e2
DL

ε08
(4)

whereeDL is the charge on a Bjerrum defect andε0 is the permittivity of free space. Nagle
[4, 5] has discussed the same problem from the viewpoint of the equilibrium thermodynamics
of molecular dipoles of momentµ in an electric field, giving

εs − ε∞ = N

V

Gµ2

3ε0kBT
(5)

in which N/V = 3
√

3/8a3 is the number of dipoles per unit volume andG is a
dimensionless constant. A simple argument due to Onsager and Dupuis [6] shows that
µ = eDLa/

√
3, and to make equations (4) and (5) equivalent it is therefore necessary that

8 = 8
√

3akBT

G
. (6)

Nagle [4] has shown by a combinatorial procedure involving the summation of a weakly
convergent series thatG ≈ 3.0, and this has been confirmed by Adams [7] using a Monte
Carlo procedure. However, this result has not been generally adopted in papers using the
Jaccard theory (see, e.g., [8–10]).

In this paper we present a very different approach to the calculation ofS(�) within
the framework of the Bernal–Fowler rules and confirm that to our level of approximation
8 is given by equation (6) withG ≈ 3.0. Our aim has been to establish that this is the
appropriate theoretical value to use in the Jaccard model, and hence to resolve the confusion
that exists on this point.

2. Theory

2.1. The basic model

Although Jaccard has defined the configuration vector by equation (1), the value ofΩ is a
function of the state of the crystal and does not depend on the process by which the crystal
reached that state. In our model we describe the state of the crystal, and hence defineΩ,
by denoting the orientations of the bonds by pseudo-spin variables. We divide the oxygen
lattice into two interpenetrating sublattices labelled 1,1′ and 2,2′ as shown in figure 1. Then
we ascribe a spin variablesi to each hydrogen bond such thatsi = +1 if the proton is near
a type 1 oxygen atom andsi = −1 if the proton is near to a type 2 oxygen atom. This
formalism automatically satisfies the first Bernal–Fowler rule that there is one proton per
bond. The second rule is introduced via the Hamiltonian [11]

H = J
∑
i,j

sisj (7)

where the sum is over all pairs of nearest-neighbour bonds. For two protons close to a given
oxygen atom the contribution to the sum is−2, for one or three protons it is 0 and for no
protons or four protons it is+6. Thus, ifJ > 0, the minimum value ofH is obtained when
every oxygen atom is associated with two protons, and we shall take the limitJ → ∞ to
select only these lowest-energy configurations.
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Figure 1. Unit cell of ice Ih. Large circles represent oxygen atoms of types 1, 1′, 2 and 2′.
Small spots represent protons at sites on bonds satisfying the Bernal–Fowler rules. Arrows
show the directions of the unit vectorsei , and the signs ofsi for this particular configuration
are marked.

For each hydrogen bond we shall define a unit vectorei directed along the bond from
the type 2 to the type 1 oxygen as shown in figure 1; the components of these unit vectors
are listed in the appendix. The configuration vector forN molecules can then be written as

ΩN = −a

2

∑
i

siei (8)

where the summation is over the 2N bonds linking the molecules. If theseN molecules
occupy a volumeV the configuration vectorΩ defined by equation (1) is given byΩN/V ,
but we shall find it simpler to write the following theory in terms ofΩN . This quantity will
clearly be zero in unpolarized ice. If the ice is polarized by the movement of some H3O+

ions, then the arrangement defined in figure 1 is such that, for each bond traversed in the
+ei directionsi changes from−1 to +1 while for bonds traversed in the−ei direction the
change insi is reversed. The right-hand side of equation (8) then yields the vector sum of
the displacements of all the ions. Considering a specific volume, equation (1) yields the
same result, and similar arguments apply to OH− ions and Bjerrum defects.

2.2. The partition function

To calculate the entropy as a function ofΩN we shall use the restricted partition function

Z
(
ΩN

) =
∑
{s}

exp(−βH) δ

(
ΩN + 1

2
a

∑
i

siei

)
(9)

whereβ = 1/kBT . The sum over{s} is over all 22N configurations of the spin variablessi ,
H is defined by equation (7), andδ is the three-dimensional delta function. WithJ → ∞
this partition function represents a sum over all states consistent with the specifiedΩN

and the Bernal–Fowler rules. We note that the vectorΩN and hence the argument of the
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delta function are discrete variables. If we concentrate attention on one oxygen atom of
type α, labelled 1, 2, 1′ or 2′ in figure 1, and require that there are only two neighbouring
protons, the contribution toΩN from the bonds around this molecule will have the form
(2a/

√
3)nαj , where thenαj (j = 1–3) are the unit vectors listed in the appendix. These unit

vectors are linear combinations of theei , and±nαj represent the six possible orientations
of a molecule of typeα. The discrete nature ofΩN is then represented by

ΩN =
∑

α

∑
j

2√
3
amαjnαj (10)

in which themαj are positive or negative integers.
We now represent the delta function in (9) as a Fourier transform

δ

(
ΩN + 1

2
a

∑
i

siei

)
= 8a3

3
√

3

∫
B

d3k

(2π)3
exp

[
ik ·

(
ΩN + 1

2
a

∑
i

siei

)]
(11)

where the integral is over a suitable Brillouin zone, but the exact boundary of the zone is
not important in this analysis because, as we shall see, the main contribution to the integral
in the partition function (equation 18) will come from smallk. Inserting (11) into (9) and
performing some algebraic rearrangement we obtain

Z
(
ΩN

) = 8a3

3
√

3

∫
B

d3k

(2π)3
Zk exp

(
ik · ΩN

)
(12)

where

Zk =
∑
{s}

exp

(
−βH +

∑
i

hisi

)
(13)

in which

hi = i 1
2ak · ei . (14)

These equations have the standard form for a partition function in an applied field with
componenthi alongei , except thathi is imaginary.

2.3. The mean-field cluster approximation

The partition functionZk will be calculated by considering a cluster of the four bonds (or
spins) around a single oxygen atom of typeα, and including the effect of the other bonds
as a mean-field correction. The method is based on that of Blinc and Svetina [12].

The Hamiltonians for the cluster and for a single bondi are

Hα = J
∑
i,j∈α

sisj + 1

β

∑
i∈α

(
1 + 1

2
x

)
hisi (15)

Hi = 1

β

∑
i∈α

(1 + x)hisi . (16)

The quantitieshi are the ‘applied fields’ in equation (13) and we have added the effective
mean fields1

2xhi andxhi . Because these terms take account of the effect of more distant
bonds, they must vanish when the applied fields are zero; we are not looking for spontaneous
ordering. In what follows the main contributions arise from smallk and thus smallhi , and
it is therefore natural to assume that the mean field depends linearly on the applied field.
The multiplier 1

2 in front of x in (15) takes account of the fact that a single spin within a
cluster has three neighbours outside the cluster, whereas the single spin considered in (16)
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has six neighbours. The parameterx which determines the strength of the mean field will
be chosen by minimizing the free energy.

Using these Hamiltonians we find the partition functions for a four-spin cluster and for
a single bond,Zc

kα andZki , respectively, and then according to the four-spin cluster theory
the partition function for a single molecule is

Zkα = Zc
kα

(Zk1Zk2Zk3Zk4)1/2
=

∑3
j=1 cos[(2a/

√
3)(1 + 1

2x)k · nαj ]

2
∏4

i=1 cos[(a/2)(1 + x)k · ei ]
. (17)

As an approximation to the whole partition functionZk we use the product of theseZkα

for the N oxygen sites.
EvaluatingZ(ΩN) from (12) gives

Z
(
ΩN

) =
(

3

2

)N ∫
B

d3q

(2π)3
exp

[
−Nϕ(q) + i

(√
3

2a

)
q · ΩN

]
(18)

where

ϕ(q) = 1

4
ln

( ∏4
α=1[

∑3
j=1

1
3 cos[(1 + 1

2x)q · nαj ]]∏4
α=1

∏4
i=1 cos1/2[(

√
3/4)(1 + x)q · eiα]

)
(19)

andq = (2a/
√

3)k with −π 6 qx , qy , qz 6 π . WhenN → ∞ we can use the saddle-point
approximation to evaluate this integral, withϕ(q) expanded to second order as a Taylor
expansion about the extremal pointq = 0. In this approximation the contribution from each
type of oxygen atomα is the same, and using expressions for the unit vectorsei andnαj

from the appendix we get

Z
(
ΩN

) =
(

3

2

)N ∫
B

d3q

(2π)3
exp

[
−N

6
q2λ(x) + i

√
3

2a
q · ΩN

]
(20)

whereλ(x) = (1 + 1
2x)2 − 3

8(1 + x)2. Performing the integration gives

Z
(
ΩN

) =
(

3

πN

)3/2(3

2

)N

exp

(
− 9Ω2

N

8Na2λ(x)

)
. (21)

Considering unit volume (N = 3
√

3/8a3) and small degrees of polarization the entropy
given bykB ln Z is

S(�) = S(0) −
√

3kBa

λ(x)
�2. (22)

The optimum value ofx is obtained by minimizing the free energy (i.e. maximizingλ(x)),
which occurs atx = 1 with λ = 3

4. In this case, equation (22) gives

8 = 8√
3
akBT . (23)

This is half Jaccard’s value (equation (3)) and corresponds toG = 3. Ignoring the mean-
field correction would be equivalent to puttingx = 0, giving λ = 5

8 or G = 5
2.

3. Discussion

Although our theory has been formulated for the ice Ih structure, requiring summation over
four oxygen sites, the symmetry of each four-spin cluster is tetrahedral and the result must be
isotropic. The same answer would be obtained for ice Ic. Our calculation has established
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a value forG at a level of approximation which is equivalent to the static permittivity
calculations of Hollins [13] or Minagawa [14]. Nagle [4] and Adams [7] include the effects
of longer range correlations, but with no significant effect onG, and no anisotropy apparent
for ice Ih.

In his treatment of the Jaccard model, Hubmann [15] introduces a dimensionless
parameter0 which has the same status in the Jaccard theory asG in the theory of dielectric
permittivity of pure ice. However,0 was defined in terms of a polarization variable that
is specific to polarization along thec axis, and this has led to some confusion over the
relationship between0 andG. It is now clear that Nagle’s [5] conclusion that0 = G/4 is
correct.

Hubmann [15] describes detailed experiments on pure and doped ice from which he
deduced thateDL = (0.38± 0.01)e and hence, using data with the field along thec axis,
he obtained0 = 0.90± 0.05. This is commonly quoted as the experimental value for0

[10]. However, many experiments [16–18] indicate thatεs is larger when the electric field
is parallel to thec axis (though one particularly careful experiment [19] designed to test
this point showed no anisotropy) and, if such experimental anisotropy exists, care is need
in interpreting these measurements.

Some experiments over a wide range of temperatures [17, 18] indicate that anisotropy
arises primarily from a Curie–Weiss temperature dependence as 1/(T − 1) of the c axis
permittivity in anticipation of a ferroelectric ordering at low temperatures [20, 21]. An
interaction leading to such ordering is included in the theory of Minagawa [14, 22] but
does not affect the slope of a plot of(εs − ε∞)−1 versusT . For comparison with the
present theories it is therefore appropriate to use either this slope or a permittivity measured
perpendicular to thec axis. A typical value ofεs − ε∞ is then 100 at 250 K, and withG
now established as about 3.0 it seems appropriate to use the data to calculateeDL, giving
0.39e. This is compatible with Hubmann’s experimental value.

We may test the range of applicability of equation (21) by calculating the entropy of ice
which is fully polarized along thec axis but disordered in the plane perpendicular to this.
The corresponding value of�N is aN/3 which gives

Z
(
�Nmax

) = (
3/2e1/6

)N = 1.270N

and the entropy per molecule iskB ln(1.270). Auvert and Villain [23] have shown by an
exact calculation that this entropy should bekB ln(1.175), but it is not surprising that our
approximation does not work well in this limit.

4. Conclusion

Our purpose in undertaking this study was to clarify the relationship between the Jaccard
theory of the electrical properties of ice and the very detailed theoretical studies that exist
on the static permittivity of pure ice. The Jaccard theory is essential for the extension
of the theory to more complicated processes such as dielectric relaxation, conductivity,
doped ice and space-charge effects [10]. We confirm that both theories involve a single
dimensionless parameter, which can be the quantityG in equation (5). In the theory of the
static permittivity it is well established thatG = 3.0 to a very close approximation, and
we have confirmed this by a very different analysis more clearly applicable to the Jaccard
model. This result is shown to be consistent with the experimental data without having to
assume a value for the dipole moment of a molecule in the ice structure.
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The theoretical value of the Jaccard constant8 is given by equation (23):

8 ≈ 8√
3
akBT

wherea is the oxygen–oxygen spacing. Hubmann’s constant0 has the theoretical value of
about 3/4, but because of the way that it is defined and confusion about its value in earlier
work we recommend that it is not used.
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Appendix

For a molecule of type 2 in figure 1 the unit vectorsei along the bonds are

e1 =
√

2

3
ex −

√
2

3
ey − 1

3
ez

e2 = 2
√

2

3
ey − 1

3
ez

e3 = −
√

2

3
ex −

√
2

3
ey − 1

3
ez

e4 = ez.

The unit vectorsnαj for a molecule of typeα = 2 are

n21 = 1√
2
ex − 1√

6
ey + 1√

3
ez

n22 =
√

2

3
ey + 1√

3
ez

n23 = − 1√
2
ex − 1√

6
ey + 1√

3
ez.

The unit vectors for other molecular sites are obtained by interchanging the signs of
appropriate components.
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